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A B S T R A C T   

To achieve the carbon peak and neutrality targets, the facile synthesis of highly active and robust catalysts for 
efficient oxygen evolution reaction (OER) is urgently demanded. Herein, a series of metal–carbon nanomaterials 
(FeNi3-NC-T, T = 600–1000 ◦C) with the hollow N-doped carbon nanorod incorporated FeNi3 nanoparticles are 
reasonably prepared via balancing epitaxial growth and etching rate. These synthesized OER catalysts exhibit 
effective synergies of multiple components, large specific surface area, high conductivity, abundant exposed 
active sites, and intrinsic activity enhanced by carbon confinement and interconnected nanostructure. Among 
them, the optimized FeNi3-NC-700 only requires low overpotentials of 262/327 mV to reach the current density 
of 10/50 mA cm− 2 in an alkaline medium, which is obviously better than these control samples. Owing to the 
aforesaid structural virtues, it exhibits high activity and good stability, fast catalytic kinetics and easy formation 
of active species evidenced by in-situ experiments as well as theoretical calculations. This study would provide a 
new idea for the easy fabrication of multifunctional MOF derivatives in electrochemistry with the desired 
properties.   

1. Introduction 

Hydrogen has been considered as the cleanest alternative energy 
source on account of its high energy output and carbon–neutral com-
bustion products. The electrochemical water splitting shows a promising 
approach for producing hydrogen, which endows with the advantages of 
high purity, high product yield, and environmental friendliness [1–4]. 
At its anode, the complex oxygen evolution reaction (OER) significantly 
reduces the overall splitting efficiency owing to its multi-step proton- 
coupled electron transfer processes with sluggish reaction kinetics 
[5–7]. Generally speaking, these noble metal oxides such as iridium 
oxide (IrO2) and ruthenium oxide (RuO2) are deemed ideal OER cata-
lysts, but their rarity, preciousness and inferior stability seriously restrict 
their large-scale industrial applications [8]. Therefore, it is imperative to 
explore cost-effective, high-activity and durable OER electrocatalysts 
based on transition metals with large reserves. 

Recently, Ni-Fe nanocomposites have been well demonstrated to be 
highly active OER catalysts in the alkaline medium as a result of the 
synergistic effects between Ni and Fe species [9–12]. The doping of Fe 

could effectively optimize the electronic configurations of Ni-based 
substrates, thus accelerating the formation of high-valence Ni species 
for an improved OER [13–15]. In addition, considerable efforts have 
been exerted to improve the electrical conductivity and catalytic activity 
of Ni-Fe species integrated with carbon nanomaterials [16]. With this 
method, it not only increases the reaction kinetics but also contributes to 
structural durability by protecting the metal components from erosion 
or detachment during electrolysis [17]. Under these circumstances, the 
rational engineering of Ni-Fe alloys embedded in carbon nanostructure 
is of great significance for high-performance OER. 

On the other hand, crystalline and versatile metal–organic frame-
works (MOFs) are structurally self-assembled by metal cations and 
organic linkers [18–21]. The abundant carbon content as well as 
adjustable metal composition make them a potential template for 
regulating the electrocatalytic performance of MOF derivatives [22]. 
These MOF-derived metal-carbons are inherently preserved with high 
conductivity and large specific surface area, which are conducive to 
their applications in the field of electrochemistry [23]. At present, there 
are various methods to promote their OER activity, such as heterometal 
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atom doping and morphology engineering [24]. The integration of 
different MOFs to obtain multiple MOF-on-MOF heterostructure is also 
confirmed to be a viable approach. First, the heterogeneous structure of 
metal centers and organic ligands alternately connected in MOF-on- 
MOF prevents the serious agglomeration of metal nanoparticles during 
pyrolysis as well as long-term electrochemical operation [25]. Mean-
while, the metal–carbon composites obtained by thermal decomposition 
using MOF-on-MOF templates can not only introduce the expected cat-
alytic active substances but also easily acquire the ideal morphology 
[26]. By this means, these precursors with abundant heterostructures 
and multifunctional compositions can facilitate the subsequent catalytic 
performance. Above, the construction of novel MOF-on-MOF hetero-
structures for heterogeneous electrocatalysis has gradually become a 
research hotspot. 

In this work, the hollow FeNi-PBA nanorod and its calcined carbon 
structures are systematically explored in Scheme 1. The rod-shaped 
NiOF-1 is first prepared as an ideal template for facile construction of 
MOF-on-MOF heterostructures. Different from the previous etching, the 
coordination bonds in NiOF-1 are easily decomposed due to the stinging 
hydrolysis of Fe(III), thus hollow NiOF-1 could be easily formed 
[27–28]. Herein, Fe(CN)6

3- complex ion reacts with the in-situ released Ni 
(II) ions which leads to the fabrication of hollow MOF-on-MOF with 
specific morphology and crystal structure. After pyrolysis, a series of 
MOF-derived hollow FeNi3-NC-T series are successfully obtained by 
carbonizing FeNi-PBA composites at gradient temperatures. Among 
them, the as-obtained electrocatalyst of FeNi3-NC-700 with in-situ cat-
alytic carbon nanotube modified and hollow nanostructures shows 
better electrochemical OER performance than these counterparts. 

2. Results and discussion 

Structurally speaking, NiOF-1 consists of half a Ni(II) ion, half a μ2-O 
anion, and one quarter of BPTC4- in its asymmetric unit (Fig. S1a, 
Table S1). In Fig. S1b, each Ni(II) is 6-coordinated with an octahedron 
to give the {Ni2(μ2-H2O)2(COO)4}n chain, and further cooperates with 
organic ligands to build tetragonal nanochannels of 15.3 Å (Fig. 1a, 
S1c). On the other hand, Pure-PBA is composed of cyano groups and 

bimetal cations (Fe and Ni) in Fig. 1b. In this case, the spacing of Ni-Fe- 
Ni (~10.17 Å) in PBA is close to that of the four neighboring Ni atoms 
(~9.44 Å) in Ni-MOF, which provides a prerequisite to the formation of 
heterostructures (Fig. 1c) [29–31]. In Fig. 1d-e, S2-3, SEM and optical 
images show these green nanorods with smooth surfaces for NiOF-1, and 
the homogeneous Pure-PBA nanocubes exhibit a high crystallinity. 
Interestingly, the surface of NiOF-1 is uniformly grafted with dense PBA 
to produce a binary PBA-on-NiOF-1, which owns a hollow morphology 
during the epitaxial growth process (Fig. 1f, S4). The PXRD patterns of 
single MOFs are of high purity, while the peaks of FeNi-PBA at 8.3◦, 
9.3◦, 14.9◦, 16.5◦ and 17.2◦, 24.5◦, 34.8◦ could be assigned to (110), 
(101), (211), (220) crystal planes of NiOF-1 (CCDC 1014611) and 
(200), (220), (400) planes of Pure-PBA (PDF#86–0501), respectively, 
which proves the coexistence of two MOFs (Fig. 1g). Furthermore, both 
peaks of –COO (1559 and 1375 cm− 1) and -C-H (790–650 cm− 1) of 
NiOF-1, and C≡N (2081 cm− 1) of PBA are detected in Fig. 1h. More 
details on the N2 isotherms and the corresponding pore size distribution 
curves of all MOF materials, please refer to Figure S5, Table S2. 

The chemical conversion strategy of FeNi-PBA anchoring onto 
NiOF-1 precursor is clearly illustrated in Fig. 2a. Owing to the intro-
duction of [Fe(CN)6]3-, FeNi-based PBA layers can be effectively 
attached to the NiOF-1 nanorods with these in-situ released Ni(II) ions 
[32–33]. After that, the crystalline MOF-on-MOF gradually evolves into 
a hollow shape under the balanced competition coordination and 
etching effect. TEM images also reveal that PBA nanoparticles are grown 
on the surface and side of the precursor (Fig. 2b-c). The high-resolution 
TEM (HR-TEM) image presents the interplanar spacing of 0.36 nm 
corresponding to the (220) lattice plane of PBA. Furthermore, the 
height profile of a single FeNi-PBA verifies its hollow nanostructure 
(Fig. 2d), and its EDS spectrum and the corresponding elemental map-
pings confirm the uniform distribution of Ni, Fe, C, N and O in Fig. 2e, 
S6. In Fig. 2f, the TGA curve demonstrates similar thermal stability for 
all involved MOFs, where the early weight loss before 400 ◦C is 
reasonably attributed to the removal of solvent molecules. After 600 ◦C, 
they would be thermally converted into a series of MOF-derived porous 
carbon nanocomposites. 

After pyrolysis, these as-obtained FeNi3-NC-T (T = 600/700/800/ 

Scheme 1. Schematic illustration of the facile synthesis of hollow FeNi-PBA and its derived FeNi3-NC-T series.  
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900/1000 ◦C) samples are featured with three main peaks of 44.3◦, 
51.5◦ and 75.9◦ to the (111), (200) and (220) planes for FeNi3 
(PDF#38–0419, Fig. 3a). Among them, FeNi3-NC-700 owns the pre-
served rod-like nanostructure where some tiny CNTs are rooted on the 
surface, which is similar to other control samples in Fig. 3b-c, S7-9. 
Interestingly, some FeNi3 particles are completely wrapped at the tips of 
CNTs with characteristic lattice fringes of 0.21 and 0.34 nm to the (111) 
plane of FeNi3 and the (002) plane of graphitic carbon, respectively 
(Fig. 3d). In Fig. 3e, another form of FeNi3 is also obviously observed to 
be coated within highly ordered carbon layers, and its lattice spacing of 
0.21 nm is also consistent with the (111) crystal plane of FeNi3. It is well 
known that transition metal ions could form alloys or metal nano-
particles during the carbothermic reduction process as a result of the 
atom movement and self-aggregation to generate nanopores at high 
temperatures (Figure S10) [34]. Meanwhile, the HAADF-STEM image 
and its elemental mappings further verify the even distribution of Ni, Fe 
and C elements in FeNi3-NC-700 (Fig. 3f, S11-14). 

X-ray photoelectron spectroscopy (XPS) confirms that FeNi3-NC-700 
consists of Ni, Fe, C, N and O consistent with the element mapping im-
ages. The deconvoluted Ni 2p spectra show two narrow peaks at 852.6/ 
869.6 eV to metallic Ni(0), and two pairs of broader peaks at 855.5/ 
872.6 eV and 861.2/879.4 eV come from the main and satellite peaks of 
oxidized Ni2+/3+. In Fig. 4a, a slight negative shift of Ni 2p peak (0.6 eV) 
for FeNi3-NC-700 compared to Ni-NC-700, which is probably attributed 
to the electron-density interactions after the introduction of Fe. It would 
significantly facilitate the electron transport between OH– and catalysts, 

thereby boosting the electrocatalytic activity [35]. The high-resolution 
Fe 2p spectrum exhibits the coexistence of metallic Fe(0) and Fe2+/3+

(Figure S15). The broad peak of N 1 s spectra give four peaks at 398.3, 
400.2, 401.0 and 403.3 eV corresponding to pyridinic, pyrrolic, 
graphitic and oxidized N species in Fig. 4b, respectively, while the C 1 s 
and O 1 s spectra are shown in Figure S15c-d. Furthermore, Raman 
curves display two peaks at 1350 and 1580 cm− 1 for amorphous sp3 (D 
band) and graphitic sp2 (G band) carbon, respectively. Among them, 
FeNi3-NC-700 owns a moderate ID/IG ratio of 1.01 with a suitable de-
gree of graphitization, which would accelerate the electron transfer 
during electrocatalysis (Fig. 4c) [36]. Finally, the BET surface areas and 
pore sizes of these MOF-derived carbon nanomaterials are depicted in 
Figure S16 and Table S2. 

The OER performance is first evaluated by LSV curves where FeNi3- 
NC-700 exhibits a decent performance with low overpotential values 
(ƞ10/50) of 262/327 mV to achieve 10/50 mA cm− 2. It is superior to 
those of FeNi3-NC-600/800/900/1000 (294/366, 288/356, 328/437, 
332/461 mV), Ni-NC-700 (381/512 mV), Pure-PBA-NC-700 (340/444 
mV) and RuO2 (291/404 mV) in Fig. 5a-b, S17. Its enhanced catalytic 
activity is also supported by the lowest Tafel slope of 69.4 mV dec-1, 
smaller than those control materials (Fig. 5c). The electrochemically 
active surface area (ECSA) based on the double-layer capacitance (Cdl) 
shows that FeNi3-NC-700 (8.42 mF cm− 2) is prominently larger for its 
hierarchically porous nanostructure (Fig. 5d, S18-19). In contrast, the 
current intensity for FeNi3-NC-900/1000 decreases significantly, which 
stems from reduced specific surface area by serious aggregation of FeNi 

Fig. 1. Crystal structures and SEM/optical images of (a, d) NiOF-1, (b, e) Pure-PBA and (c, f) heterostructured FeNi-PBA; (g) PXRD patterns and (h) FT-IR spectra of 
various MOFs. 
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alloys [37–38]. In Fig. 5e, the EIS result of FeNi3-NC-700 shows a 
semicircle radius comparable to that of RuO2, testifying the rapid re-
action kinetics. Furthermore, the rotating ring-disk electrode (RRDE) is 
used to detect the number of electrons (N) transferred to each O2, where 
the ring current (Iring) is almost negligible compared with the disk cur-
rent (Idisk). Herein, the average N value is calculated to be 3.9 to infer the 
quasi-four-electron process (Fig. 5f). Subsequently, near 100% Faraday 
efficiency is also recorded to suggest that oxidation current is intrinsi-
cally generated by oxygen evolution (Figure S20). Besides, its durability 
is measured by i-t curve in Fig. 5g, which retains the current retention 
rate of 93.2%/81.5% over 10/ 50 h (Figure S21), and there is almost no 
obvious current loss after 500 cycles. In order to further assess the sta-
bility of our material, we conducted SEM and TEM tests on the samples 
after prolonged measurements. SEM characterization of samples sub-
jected to long-term durability tests reveals that the structure of FeNi3- 
NC-700 remains substantially intact with minimal collapse 
(Figure S22). Additionally, in the TEM images (Figure S23), FeNi3 
nanoparticles in the FeNi3-NC-700 material after the OER are observed 
to be partially reduced and slightly agglomerated, which understand-
ably leads to reduced performance. In the PXRD test, samples after the 
OER test exhibit three main peaks consistent with FeNi3 (Figure S24). 
As shown in Figure S25a, the obtained XPS spectra reveal five elements: 
C, N, O, Fe, and Ni, confirming that the elemental composition of FeNi3- 

NC-700 remains unchanged after the OER cycle test. Furthermore, in the 
Ni 2p region (Figure S25b), the XPS analysis demonstrates a shift to 
higher binding energy for the Ni(II/III) peaks and a weakening of the Ni 
(0) peaks after the long-term OER process. A similar situation is 
observed in the Fe 2p spectrum (Figure S25c), where the Fe(II/III) peak 
shifts to higher binding energy and the Fe(0) peak is weakened as well. 
These features indicate partial surface oxidation of FeNi3-NC-700 dur-
ing the OER process. In Table S3, the TOF value of FeNi3-NC-700 (6.38 
× 10-3 s− 1) is much higher than that of Ni-NC-700 (2.52 × 10-4 s− 1) and 
Pure-PBA-NC-700 (7.82 × 10-4 s− 1) at an overpotential of 300 mV, and 
roughly 2-fold higher than that of RuO2 (3.18 × 10-3 s− 1). More 
importantly, it shows competitive OER properties in comparison with 
those previous electrocatalysts in Fig. 5h and Table S4-S5. 

It exhibits a gradually increasing and finally stabilizing trend from 
the activation of the catalyst in the OH-rich medium after 10 cycles 
(Fig. 6a, S26) [39]. Meanwhile, the structural reconstruction of FeNi3 
towards oxidized Fe-doped NiOOH species is explored through in-situ 
EIS measurements, showing an increase in impedance (Fig. 6b). In 
Fig. 6c, Raman spectroscopy is also adopted to reveal the active species 
of FeNi3-NC-700 at the working conditions. Before OER, a distinct peak 
at 480 cm− 1 is reasonably assigned to stretching modes of FeNi-O for 
FeNi3-NC-700. When it commences at 1.25 V (vs. SCE), some weak 
peaks at 580 and 900 cm− 1 are observed from the vibration of FeNiOOH 

Fig. 2. (a) Schematic preparation of FeNi-PBA; (b-c) TEM and HR-TEM images, (d) the height profile, (e) HAADF-STEM and element mapping images of FeNi-PBA; 
(f) TGA curves of NiOF-1, Pure-PBA and FeNi-PBA. 
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(Figure S27). After OER, the amorphous integrated with crystalline 
counterparts could enhance the electrocatalytic activities owing to their 
enriched active sites as compared to pure crystalline counterparts in 
Fig. 6d-e, S28 [40]. The overall OER pathways on FeNiOOH/FeNi3 are 
depicted in Fig. 6f, S29-31 [41–43]. First of all, one H2O molecule is 
adsorbed on Ni (0.31 eV), which is closest to doping-Fe (State 1). The 
first oxidation takes place in the deprotonation of the hydrogen bond on 
the bridging O between adjacent Ni centers (1.17 eV, State 2). Followed 
by that is the deprotonation of H2O adsorbed on a neighboring Ni (0.87 
eV, State 3). The third step is normally the rate-determining step that 
generates an O radical (O⋅) through deprotonation of the OH adsorbed 
on Ni closest to doping-Fe with an additional H2O (1.67 eV, State 4). The 
formed O⋅ promotes the coupling of O-O and H2O to form OOH (-0.16 
eV, State 4′). The fourth oxidation step with deprotonation of the OOH 
is carried out in State 4′, which requires 0.81 eV to generate superoxide 
in State 5. It returns to the starting point (State 0) after releasing O2 
molecule through a non-electrochemical charge transfer step (0.39 eV). 

3. Conclusion 

In summary, a series of hollow carbon nanostructures with abundant 
FeNi3 nanoparticles have been conveniently prepared by a MOF-on- 
MOF strategy. The as-obtained catalysts of FeNi3-NC-T well exhibit a 

multi-component positive synergy, such as ordered graphitic carbon 
layers incorporated FeNi3 nanoparticles, large active sites and increased 
intrinsic activity, which are confirmed by the physical characterization 
and electrochemical tests. Specifically, the obtained FeNi3-NC-700 
shows a superior OER performance with low overpotential values of 262 
mV and 327 mV to achieve the current density of 10 mA cm− 2 and 50 
mA cm− 2, a Tafel slope as low as 69.4 mV dec-1, and a current retention 
rate of 93.2% after 10 h. In general, these hollow carbon nanotubes with 
self-catalyzed hierarchical nanostructure promote the synergistic effect 
of active site exposure and shorten the electron transfer path, while Fe- 
doped nickel hydroxide enhances the intrinsic activity during OER. 
Above, this work demonstrates a facile way to explore the heteroge-
neous catalysis of MOF-on-MOF derived nanomaterials which is widely 
used in energy-related applications. 
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Fig. 3. (a) PXRD patterns of Ni-NC-700 and FeNi3-NC-T series; (b, c, d-e) SEM, TEM, and HR-TEM images, (f) HAADF-STEM and element mapping images of FeNi3- 
NC-700. 

Fig. 4. The high-resolution XPS spectra of (a) Ni 2p and (b) N 1 s for FeNi3-NC-700 and Ni-NC-700; (c) Raman spectra of Ni-NC-700 and FeNi3-NC-T series.  
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Fig. 5. (a) LSV curves, (b) electrochemical ƞ10/50 comparison, (c) Tafel plots, (d) Cdl values, (e) EIS diagram of Ni-NC-700, FeNi3-NC-T and RuO2; (f) RRDE 
voltammogram and its calculated N, (g) the stability evaluation of FeNi3-NC-700; (h) OER comparison with those reported electrocatalysts. 
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